Package: blapsr 0.6.1
blapsr: Bayesian Inference with Laplace Approximations and P-Splines
Laplace approximations and penalized B-splines are combined for fast Bayesian inference in latent Gaussian models. The routines can be used to fit survival models, especially proportional hazards and promotion time cure models (Gressani, O. and Lambert, P. (2018) <doi:10.1016/j.csda.2018.02.007>). The Laplace-P-spline methodology can also be implemented for inference in (generalized) additive models (Gressani, O. and Lambert, P. (2021) <doi:10.1016/j.csda.2020.107088>). See the associated website for more information and examples.
Authors:
blapsr_0.6.1.tar.gz
blapsr_0.6.1.zip(r-4.5)blapsr_0.6.1.zip(r-4.4)blapsr_0.6.1.zip(r-4.3)
blapsr_0.6.1.tgz(r-4.4-any)blapsr_0.6.1.tgz(r-4.3-any)
blapsr_0.6.1.tar.gz(r-4.5-noble)blapsr_0.6.1.tar.gz(r-4.4-noble)
blapsr_0.6.1.tgz(r-4.4-emscripten)blapsr_0.6.1.tgz(r-4.3-emscripten)
blapsr.pdf |blapsr.html✨
blapsr/json (API)
NEWS
# Install 'blapsr' in R: |
install.packages('blapsr', repos = c('https://oswaldogressani.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/oswaldogressani/blapsr/issues
- ecog1684 - Phase III Melanoma clinical trial.
- kidneytran - Survival data of kidney transplant patients.
- laryngeal - Survival data of male laryngeal cancer patients.
- medicaid - Data from the 1986 Medicaid Consumer Survey.
- melanoma - Melanoma survival data.
Last updated 2 years agofrom:da0a6e735d. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | NOTE | Nov 19 2024 |
R-4.5-linux | NOTE | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:adjustPDamlpscoxlpscoxlps.baselinecubicbscurelpscurelps.extractgamlpsltpenaltyplotsimcuredatasimgamdatasimsurvdatasmsnmatchst
Dependencies:codalatticeMASSMatrixMatrixModelsmnormtnumDerivquantregRcppRcppEigenRSpectrasnSparseMsurvival